
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  21 (1986 )  2 5 2 5 - 2 5 2 7  

Determination of hardness to elastic modulus 
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half-cycles 

J. C. C O N W A Y ,  Jr 
Department of Engineering Science and Mechanics, The Pennsylvania State University, 
University Park, Pennsylvania 16802, USA and Ceramic Finishing Co., State College, 
Pennsylvania 16804, USA 

A model is developed which results in an expression relating the residual in-surface dimension 
of the minor diagonal of a Knoop indenter through a "residual-width parameter" (bR/b*) 2 to 
the hardness-to-modulus ratio (H/E) of elastic-plastic materials. The relationship is shown to 
predict within reasonable accuracy both the intercept and slope of a plot of (bR/b*) 2 against 
(H/E), using data for a variety of materials. The work supplements concepts presented in two 
previous investigations. 

1. I n t r o d u c t i o n  
Measurement of the hardness-to-modulus ratio HIE 
of elastic-plastic materials is an important prerequi- 
site to the determination of fracture toughness by 
indentation methods [1]. Two indentation techniques 
have been developed to date to measure this important 
parameter. The first, developed by Lawn and Howes 
[2], demonstrated that HIE could be related to the 
elastic depth recovery of Vickers indentations. The 
model adopted was based on maintaining compatibility 
at the maximum penetration depth for an elastic- 
plastic loading half-cycle and an elastic unloading or 
reloading half-cycle. The second technique, developed 
by Marshall et al. [3], related HIE to the residual 
in-surface dimension of the minor diagonal of a 
Knoop indentation. This method was based on a 
model utilizing the superposition of solutions for an 
elliptical hole subjected to uniaxial stress and the fact 
that the in-surface dimension of the major diagonal 
undergoes relatively little length change during 
unloading. Both techniques were shown to give accu- 
rate predictions of H/E through the results of inden- 
tation experiments conducted on selected materials, 
mainly ceramics. 

This paper applies the methodology of the Lawn 
and Howes model [2] to a Knoop indentation and 
offers a supplemental approach to that adopted by 
Marshall et aL [3]. The model is based on an elastic- 
plastic loading half-cycle and an elastic unloading or 
reloading half-cycle, and HIE is related to the residual 
in-surface dimension of the minor diagonal of a 
Knoop indentation. 

2. Model  
Referring to Fig. 1, during the loading half-cycle the 
material immediately surrounding the indenter under- 
goes elastic-plastic deformation resulting in the 

characteristic in-surface contact dimensions 2a* and 
2b* at maximum indentation load, P*. As unloading 
occurs, elastic recovery takes place along the 
in-surface dimension of the minor diagonal resulting 
in a residual dimension 2b R. Relatively little change 
takes place in the in-surface dimension of  the major 
diagonal during unloading. 

During indentation, the projected area is Ap = 2ab 
and the mean contact pressure is P0 = P/2ab with P 
being the contact load. Adopting the notation of 
Lawn and Howes [2] with a = 7.11b and P0 = H 
during the loading half-cycle, 

P = 14.22Hb~ (1) 

In deriving this expression, "pile-up" or "sink-in" of 
the plastically-deformed material surrounding the 
contact zone has been neglected. As can be seen from 
Equation 1, the indentation mechanics is controlled 
by the hardness H during the elastic-plastic loading 
half-cycle. 

During the elastic unloading or reloading half- 
cycle, the mean contact pressure associated with 
a rigid wedge or cone is adopted as Pm = E x 
COt 7/2(1 -- v 2) [4]. In this expression, E and v are the 
modulus of elasticity and Poisson's ratio of the 
indented material, respectively, and ? is the average 
half-angle of a Knoop indenter (a + fl)/2. Elastic 
loading of a half-space may then be generally described 
a s  

[ {  14.22E '~ ] 
BE = L \ 2 i  I _ v2)) cot  7~ b~ (2) 

where 2bE is the in-surface dimension of the minor 
diagonal at any given load PE. 

Referring to Fig. 2, the loading half-cycle is shown 
as OC and is described by Equation 1. The unloading 
half-cycle is shown as CD, resulting in a residual 
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Figure 1 Knoop indentation impression showing in-surface 
elastic recovery of minor diagonal. 

in-surface minor diagonal dimension 2ba. Since the 
unloading and reloading stages are reversible, reload- 
ing along path D ' C '  will be used to describe the 
unloading half-cycle. Reloading can be described by 
writing Equation 2 referenced with respect to a coor- 
dinate system with origin at D '  as 

r(_ 14.22E__ .'~ ] 
= [_ \2( I  -- v 2 ) ) c o t T ~  (b~ - b 2) (3) p '  

where bR ~< bE ~ b* during reloading and 2b* is the 
in-surface dimension of the minor diagonal at 
maximum load P*. This is equivalent to adopting the 
"compressed spring" model of Lawn and Howes [2]. 
Compatibility conditions at the end of the loading and 
reloading half-cycles require that at P = P*, bH = 
bE = b* so that Equations 1 and 3 give 

( bR~ 2 1 -  [ 2 ( 1 -  v2) t a n T ] ( H )  (4) = 

This expression can, of course, be written in terms of 
the in-surface major diagonal dimension at maximum 
load 2a* since a* = 7.1 lb*. In conducting actual tests, 
this may be the more convenient formulation since the 
length of the in-surface major diagonal undergoes 
relatively little dimensional change on unloading. In 
either case, Equation 4 indicates that H I E  can be 
directly related to the residual in-surface minor diag- 
onal dimension 2bR. 

3. Results and discussion 
The relationship between the hardness-to-modulus 
ratio H I E  and the residual in-surface minor diagonal 
dimension 2bR as expressed in Equation 4 was 
verified by plotting existing data for a variety of 
materials as (bR/b*) 2 against H I E  in Fig. 3. The data 
were obtained from Table I and Fig. 2 of Marshall 
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Figure 2 Loading, unloading and reloading half-cycles. P is the 
contact load and b the minor diagonal in-surface half dimension. 
Loading plot from Equation 1; reloading plot from Equation 2. 
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Figure 3 Residual width parameter (bR/b*) 2 as a function of 
hardness-to-modulus ratio (H/E). 

et al. [3] and are shown in Table I of this paper. Values 
of (bR/a') graphically shown by Marshall et al. [3] 
were converted to the "residual-width parameter" 
(bR/b*) 2 by assuming that a' ~ a* = 7.11b*. The 
solid line through the data is a least-squares curve fit 
with an intercept of 1.03 and a slope of -6 .19.  The 
intercept and slope predicted from Equation 4, assum- 
ing v = 0.25 and 7 = 75~ (the average half-angle of a 
Knoop indenter) are 1.00 and -6 .99  respectively. 
These are reasonable results when considering the 
sensitivity of the quantity 2(1 - v 2) tan 7 to changes 
in the average half-angle of the indenter 7, as well as 
the data scatter. The data do not span the elastic- 
plastic spectrum but ideal plastic behaviour is indi- 
cated in Fig. 3 at the point (bg/b*) 2 = 1.00, H I E  = O. 
Extrapolation of the curve fit to ideal elastic behavi- 
our gives (bR/b*) 2 = O, H I E  = 0.17. 

Results obtained by using the model presented in 
this paper compare well with those obtained by 
Marshall et al. [3], as can be seen by comparing like 
intercepts and slopes of plots for a residual-width 
parameter against hardness-to-modulus ratio for like 
data. Converting the ordinate of Fig. 3 of this work 
from (bn/b*) 2 to bR/a* = b'/a' for b* = 7.11a* gives 
intercept of 0.14 and a slope of - 0.48, which compare 

T A B L E I Material and dimensional parameters 

Material HIE bR/a* (b~/b*) z 

Soda-lime glass 0.079 0.106 0.568 
Glass-ceramic 0.078 0.104 0.547 
Si3N 4 (hot-pressed) 0.062 0. I 11 0.623 
A1203 (hot-pressed) 0.050 0.118 0.704 
ZrO 2 (partially stabilized) 0.048 0.120 0.728 
MgF 2 (hot-pressed) 0.043 0.119 0.716 
Steel (hardened) 0.041 0.126 0.803 
ZnS (hot-pressed) 0.019 0.137 0.949 
ZnO (hot-pressed) 0.017 0.134 0.908 

2 5 2 6  



favourably with values of 0.14 and - 0.45 obtained by 
Marshall et al. [3]. The model described in this paper, 
however, avoids the assumption of a two-dimensional 
elliptical hole solution and allows direct analytical 
determination of the slope and intercept with reason- 
able accuracy. 
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